Belt Sizing Guide

Belt Sizing Guide

Many conveying timing belts operate at low speeds and minimal loads. This eliminates the need for extensive calculations and a simplified approach to belt selection can be used. For these lightly loaded applications, the belt can be selected according to the dimensional requirements of the system, product size, desired pulley diameter, conveyor length, etc.

The belt width \boldsymbol{b} is often determined according to the size of the product conveyed, and as a rule, the smallest available belt pitch is used. For proper operation, the pre-tension $\boldsymbol{T}_{\boldsymbol{i}}$ should be set as follows:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{i}} \approx 0.3 \cdot \mathrm{~b} \cdot \mathrm{~T}_{1 \text { all }} \\
& \text { where: } \begin{aligned}
& \mathrm{T}_{\mathrm{i}}=\text { belt pre-tension } \\
& \mathrm{T}_{1 \text { all }}=\text { max allowable belt tension for } \\
& 1 " \text { or } 25 \mathrm{~mm} \text { wide belt (see Table } 1 \text { or Table 2) }
\end{aligned}
\end{aligned}
$$

U.S. customary units: $T_{i}[\mathrm{lb}], \mathrm{T}_{1 \text { all }}$ [lb/in], b [in] Metric units: $\mathrm{T}_{\mathrm{i}}[\mathrm{N}], \mathrm{T}_{\text {all }}[\mathrm{N} / 25 \mathrm{~mm}], \mathrm{b}[\mathrm{mm}]$.

For all applications where the loads are significant, the following step-by-step procedure should be used for proper belt selection.

Step 1. Determine Effective Tension

The effective tension $\boldsymbol{T}_{\boldsymbol{e}}$ at the driver pulley is the sum of all individual forces resisting the belt motion. The individual loads contributing to the effective tension must be identified and calculated based on the loading conditions and drive configuration. However, some loads cannot be calculated until the layout has been decided.

To determine the effective tension $\boldsymbol{T}_{\boldsymbol{e}}$ use one of the following methods for either conveying or linear positioning.

Conveying

$\boldsymbol{T}_{\boldsymbol{e}}$ for conveying application is primarily the sum of the following forces (see Figs. 1 and 2).

1. The friction force $\boldsymbol{F}_{\boldsymbol{f}}$ between the belt and the slider bed resulting from the weight of the conveyed material.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{f}}=\mu \cdot \mathrm{w}_{\mathrm{m}} \cdot \mathrm{~L}_{\mathrm{m}} \cdot \cos ß \\
& \text { where: } \mu \quad \begin{aligned}
=\text { coefficient of friction between the slider bed } \\
\text { and the belt (see Table 1A) }
\end{aligned} \\
& \text { length } \begin{aligned}
\mathrm{w}_{\mathrm{m}} & =\text { load weight per unit length over conveying }
\end{aligned} \\
& \begin{aligned}
\mathrm{L}_{\mathrm{m}} & =\text { conveying length } \\
B & =\text { angle of conveyor incline }
\end{aligned}
\end{aligned}
$$

U.S. customary units: $\mathrm{F}_{\mathrm{f}}[\mathrm{lb}], \mathrm{w}_{\mathrm{m}}[\mathrm{lb} / \mathrm{ft}], \mathrm{L}_{\mathrm{m}}[\mathrm{ft}]$.

Metric units: $\mathrm{F}_{\mathrm{f}}[\mathrm{N}], \mathrm{w}_{\mathrm{m}}[\mathrm{N} / \mathrm{m}], \mathrm{L}_{\mathrm{m}}[\mathrm{m}]$.
2. The gravitational load $\boldsymbol{F}_{\boldsymbol{g}}$ to lift the material being transported on an inclined conveyor.

$$
F_{g}=w_{m} \cdot L_{m} \cdot \sin ß
$$

Fig. 1
5. The force $\boldsymbol{F}_{\boldsymbol{a i}}$ required to accelerate the idler.

$$
\mathrm{F}_{\mathrm{ai}}=\frac{\mathrm{J}_{\mathrm{i}} \cdot \alpha}{\mathrm{r}_{\mathrm{o}}}=\frac{\mathrm{m}_{\mathrm{i}} \cdot \mathrm{r}_{\mathrm{o}}^{2}}{2 \cdot \mathrm{r}_{\mathrm{o}}} \cdot \frac{\mathrm{a}}{\mathrm{r}_{\mathrm{o}}}=\frac{\mathrm{m}_{\mathrm{i}} \cdot \mathrm{a}}{2}
$$

where: $J_{i}=\frac{m_{i} \cdot r_{0}^{2}}{2}=$ inertia of the idler
$\begin{array}{ll}\mathrm{m}_{\mathrm{i}} & =\text { mass of the idler } \\ r_{0} & =\text { idler outer radius } \\ \alpha=\frac{a}{r_{0}} & =\text { angular acceleration }\end{array}$
In the formula above, the mass of the idler $\boldsymbol{m}_{\boldsymbol{j}}$ is approximated by the mass of a full disk.

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{i}}=\rho \cdot \mathrm{b}_{\mathrm{i}} \cdot \pi \cdot \mathrm{r}_{\mathbf{O}}^{2} \\
& \text { where: } \rho=\text { density of idler material } \\
& b_{i}=\text { width of the idler }
\end{aligned}
$$

U.S. units: $\rho\left[\mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft} 4\right], \mathrm{b}_{\mathrm{i}}$ and $\mathrm{r}_{\mathrm{O}}[\mathrm{ft}]$.

Metric units: $\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right], \mathrm{b}_{\mathrm{i}}$ and $\mathrm{r}_{\mathrm{O}}[\mathrm{m}]$.
6. The force $\boldsymbol{F}_{\boldsymbol{a} \boldsymbol{b}}$ required to accelerate the belt mass.

$$
\mathrm{F}_{\mathrm{ab}}=\mathrm{m}_{\mathrm{b}} \cdot \mathrm{a}
$$

The belt mass $\boldsymbol{m}_{\boldsymbol{b}}$ is obtained from the specific belt weight $\boldsymbol{w}_{\boldsymbol{b}}$ and belt length and width.

$$
m_{b}=\frac{w_{b} \cdot L \cdot b}{g}
$$

U.S. units: $F_{a b}[\mathrm{lb}], \mathrm{m}_{\mathrm{b}}\left[\mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\right], \mathrm{a}\left[\mathrm{ft} / \mathrm{s}^{2}\right], \mathrm{w}_{\mathrm{b}}\left[\mathrm{lb} / \mathrm{tt}^{2}\right], \mathrm{L}$ and b [ft],

$$
\mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2}
$$

Metric units: $\mathrm{F}_{\mathrm{ab}}[\mathrm{N}], \mathrm{m}_{\mathrm{b}}[\mathrm{kg}], \mathrm{a}\left[\mathrm{m} / \mathrm{s}^{2}\right], \mathrm{w}_{\mathrm{b}}\left[\mathrm{N} / \mathrm{m}^{2}\right], \mathrm{L}$ and b [m],

$$
\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2} .{ }^{*}
$$

Thus for linear positioners, $\boldsymbol{T}_{\boldsymbol{e}}$ is expressed by:

$$
\mathrm{T}_{\mathrm{e}}=\mathrm{F}_{\mathrm{a}}+\mathrm{F}_{\mathrm{f}}+\mathrm{F}_{\mathrm{w}}+\mathrm{W}_{\mathrm{s}}+\left[\mathrm{F}_{\mathrm{ai}}\right]+\left[\mathrm{F}_{\mathrm{ab}}\right]
$$

Note that the forces in brackets can be calculated by estimating the belt mass and idler dimensions. In most cases, however, they are negligible and can be ignored.

Step 2. Select Belt Pitch

Use Graphs $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$ or 2 d to select the nominal belt pitch \boldsymbol{p} according to $\boldsymbol{T}_{\boldsymbol{e}}$. The graphs also provide an estimate of the required belt width. (For H pitch belts wider than 6 " $(152.4 \mathrm{~mm})$ andT10 pitch belts wider than 150 mm , use Graph 1).

Step 3. Calculate Pulley Diameter

Use the preliminary pulley diameter $\tilde{\boldsymbol{d}}$ desired for the design envelope and the selected nominal pitch \boldsymbol{p} to determine the preliminary number of pulley teeth $\tilde{\boldsymbol{z}}_{\boldsymbol{p}}$.

$$
\tilde{z}_{\mathrm{p}}=\frac{\pi \cdot \tilde{\mathrm{d}}}{\mathrm{p}}
$$

Round to a whole number of pulley teeth $\boldsymbol{z}_{\boldsymbol{p}}$. Give preference to stock pulley diameters. Check against the minimum number of pulley teeth $\boldsymbol{z}_{\text {min }}$ for the selected pitch given in Table 1 orTable 2.
Determine the pitch diameter \boldsymbol{d} according to the chosen number of pulley teeth $\boldsymbol{z}_{\boldsymbol{p}}$.

$$
\mathrm{d}=\frac{\mathrm{p} \cdot \mathrm{z}_{\mathrm{p}}}{\pi}
$$

Step 4. Determine Belt Length and Center Distance

Use the preliminary center distance $\tilde{\boldsymbol{C}}$ desired for the design envelope to determine a preliminary number of belt teeth $\tilde{\boldsymbol{z}}_{\boldsymbol{b}}$.

Fig. 3
3. The friction force $\boldsymbol{F}_{\boldsymbol{f} \boldsymbol{v}}$ resulting from vacuum in vacuum conveyors.

$$
\begin{aligned}
& F_{f v}=\mu \cdot P \cdot A_{v} \\
& \text { where: } P=\text { pressure (vacuum) relative to atmospheric } \\
& \quad A_{v}=\text { total area of vacuum openings } \\
& \text { U.S. units: } F_{f v}[\mathrm{Ib}], P\left[\mathrm{Ib} / \mathrm{ft}^{2}\right], A_{v}[\mathrm{ft}] \\
& \text { Metric units: } \mathrm{F}_{\mathrm{fv}}[\mathrm{~N}], \mathrm{P}[\mathrm{~Pa}], \mathrm{A}_{\mathrm{v}}[\mathrm{~m}]
\end{aligned}
$$

The formula above assumes a uniform pressure and a constant coefficient of friction.
4. The friction force $\boldsymbol{F}_{\boldsymbol{f a}}$ over the accumulation length in material accumulation applications.

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{F}_{\mathrm{fa}}=\left(\mu+\mu_{\mathrm{a}}\right) \cdot \mathrm{w}_{\mathrm{ma}} \cdot \mathrm{~L}_{\mathrm{a}} \cdot \cos ß \\
& \text { where: } \mathrm{L}_{\mathrm{a}}= \\
& \text { accumulation length } \\
& \mu_{\mathrm{a}}= \\
& \quad \text { friction coefficient between accumulated } \\
&\text { material and the belt (see Table } 1 \mathrm{~A})
\end{aligned} \\
& \qquad \mathrm{w}_{\mathrm{ma}}=\begin{array}{l}
\text { material weight per unit length over the } \\
\\
\\
\text { accumulation length }
\end{array} \\
& \text { U.S. customary units: } \mathrm{L}_{\mathrm{a}}[\mathrm{ft}], \mathrm{w}_{\mathrm{ma}}[\mathrm{Ib} / \mathrm{ft}] . \\
& \text { Metric units: } \mathrm{L}_{\mathrm{a}}[\mathrm{~m}], \mathrm{w}_{\mathrm{ma}}[\mathrm{~N} / \mathrm{m}] .
\end{aligned}
$$

5. The inertial force $\boldsymbol{F}_{\boldsymbol{a}}$ caused by the acceleration of the conveyed load (see linear positioning).
6. The friction force $\boldsymbol{F}_{\boldsymbol{f} \boldsymbol{b}}$ between belt and slider bed caused by the belt weight.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{fb}}=\mu \cdot \mathbf{w}_{b} \cdot b \cdot L_{c} \cdot \cos ß \\
& \text { where: } w_{b} \\
&=\text { specific belt weight } \\
& b=\text { belt width } \\
& L_{c}=\text { conveying length }
\end{aligned}
$$

U.S. customary units: $\mathrm{w}_{\mathrm{b}}\left[\mathrm{lb} / \mathrm{ft}^{2}\right], \mathrm{b}[\mathrm{ft}], \mathrm{L}_{\mathrm{c}}[\mathrm{ft}]$.

Metric units: $\mathrm{w}_{\mathrm{b}}\left[\mathrm{N} / \mathrm{m}^{2}\right], \mathrm{b}[\mathrm{m}], \mathrm{L}_{\mathrm{c}}[\mathrm{m}]$.*
For initial calculations, use belt width which is required to handle the size of the conveyed product.

Thus for conveyors, $\boldsymbol{T}_{\boldsymbol{e}}$ is expressed by:

$$
T_{e}=F_{f}+F_{g}+F_{f v}+F_{f a}+F_{a}+\left(F_{f b}\right)+\ldots
$$

$\boldsymbol{F}_{\boldsymbol{f} \boldsymbol{b}}$ can be calculated by estimating the belt mass. In most cases, this weight is insignificant and can be ignored.
Note that other factors, such as belt supporting idlers, or accelerating the material fed onto the belt,
may also account for some power requirement. In start-stop applications, acceleration forces as presented for linear positioning, may have to be evaluated.

Linear Positioning

$\boldsymbol{T}_{\boldsymbol{e}}$ for a linear positioning application is primarily the sum of the following six factors (see Fig. 3).

1. The force $\boldsymbol{F}_{\boldsymbol{a}}$ required for the acceleration of a loaded slide with the mass $\boldsymbol{m}_{\boldsymbol{s}}$ (replace the mass of the slide with the mass of the package in conveying).

$$
\mathrm{F}_{\mathrm{a}}=\mathrm{m}_{\mathrm{s}} \cdot \mathrm{a}
$$

The average acceleration a is equal to the change in velocity per unit time.

$$
\begin{aligned}
& a=\frac{v_{f}-v_{i}}{t} \\
& \text { where: } \begin{aligned}
v_{f} & =\text { final velocity } \\
v_{i} & =\text { initial velocity } \\
t & =\text { time }
\end{aligned}
\end{aligned}
$$

U.S. customary units: $\mathrm{F}_{\mathrm{a}}[\mathrm{lb}], \mathrm{a}\left[\mathrm{ft} / \mathrm{s}^{2}\right], \mathrm{v}_{\mathrm{f}}$ and $\mathrm{v}_{\mathrm{i}}[\mathrm{ft} / \mathrm{s}] \mathrm{t}[\mathrm{s}]$. The mass is derived from the weight $\mathrm{W}_{\mathrm{s}}[\mathrm{lb}]$ and the acceleration due to gravity $\mathrm{g}\left(\mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2}\right)$:

$$
\mathrm{m}_{\mathrm{s}}=\frac{\mathrm{W}_{\mathrm{s}}}{\mathrm{~g}}=\frac{\mathrm{W}_{\mathrm{s}}}{32.2}\left[\frac{\mathrm{lb} \cdot \mathrm{~s}^{2}}{\mathrm{ft}}\right]
$$

Metric units: $\mathrm{F}_{\mathrm{a}}[\mathrm{N}]$, $a\left[\mathrm{~m} / \mathrm{s}^{2}\right], \mathrm{v}_{\mathrm{f}}$ and $\mathrm{v}_{\mathrm{i}}[\mathrm{m} / \mathrm{s}], \mathrm{t}[\mathrm{s}], \mathrm{m}_{\mathrm{s}}[\mathrm{kg}]$.
2. The friction force $\boldsymbol{F}_{\boldsymbol{f}}$ between the slide and the linear rail is determined experimentally, or from data from the linear bearing manufacturer. Other contributing factors to the friction force are bearing losses from the yolk, piston and pillow blocks (see Fig. 3).
3. The externally applied working load $\boldsymbol{F}_{\boldsymbol{W}}$ (if existing).
4. The weight $\boldsymbol{W}_{\boldsymbol{s}}$ of the slide (not required in horizontal drives).

Fig. 2

For equal diameter pulleys:

$$
\tilde{z}_{b}=2 \cdot \frac{\tilde{C}}{p}+z_{p}
$$

For unequal diameter pulleys: (See Fig. 4)

$$
\tilde{z}_{\mathrm{b}} \approx 2 \cdot \frac{\tilde{\mathrm{C}}}{\mathrm{p}}+\frac{\mathrm{z}_{\mathrm{p}_{2}}+\mathrm{z}_{\mathrm{p}_{1}}}{2}+\frac{\mathrm{p}}{4 \mathrm{C}} \cdot\left(\frac{\mathrm{z}_{\mathrm{p}_{2}}-\mathrm{z}_{\mathrm{p}_{1}}}{\pi}\right)^{2}
$$

Choose a whole number of belt teeth $\boldsymbol{z}_{\boldsymbol{b}}$. If you have profiles welded to the belt, consider the profile spacing while choosing the number of belt teeth. Determine the belt length \boldsymbol{L} according to the chosen number of belt teeth.

$$
\mathrm{L}=\mathrm{z}_{\mathrm{b}} \cdot \mathrm{p}
$$

Determine the center distance \boldsymbol{C} corresponding to the chosen belt length.
For equal diameter pulleys:

$$
C=\frac{L-\pi \cdot d}{2}
$$

For unequal diameter pulleys:

$$
C \approx \frac{Y+\sqrt{Y^{2}-2\left(d_{2}-d_{1}\right)^{2}}}{4}
$$

$$
\text { where: } \mathrm{Y}=\mathrm{L}-\frac{\pi \cdot\left(\mathrm{d}_{2}+\mathrm{d}_{1}\right)}{2}
$$

Step 5. Calculate The Number of Teeth in Mesh of the Small Pulley

Calculate the number of teeth in mesh $\boldsymbol{z}_{\boldsymbol{m}}$, using the appropriate formula.
For two equal diameter pulleys:

$$
z_{m}=\frac{z_{p}}{2}
$$

For two unequal diameter pulleys:

$$
\mathrm{z}_{\mathrm{m}} \approx \mathrm{z}_{\mathrm{p}_{1}} \cdot\left(0.5-\frac{\mathrm{d}_{2}-\mathrm{d}_{1}}{2 \pi \cdot \mathrm{C}}\right)
$$

Step 6. Determine Pre-tension

The pre-tension $\boldsymbol{T}_{\boldsymbol{i}}$, defined as the belt tension in an idle drive, is illustrated as the distance between the belt and the dashed line in Figs. 1, 2, and 3. The pretension prevents jumping of the pulley teeth during belt operation. Based on experience, timing belts perform best with the slack side tension as follows:

$$
T_{2}=(0.1, \ldots, 0.3) T_{e}
$$

Drives with a fixed center to center distance

Drives with fixed center distances have the position of the adjustable shaft locked after pre-tensioning the belt (see Figs. 1 and 3). Assuming tight and slack side tensions are constant over the respective belt lengths, and a minimum slack side tension in the range of the above relationship (uni-directional load only), the pre-tension is calculated utilizing the following equation:

$$
\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{2}+\mathrm{T}_{\mathrm{e}} \cdot \frac{\mathrm{~L}_{1}}{\mathrm{~L}}
$$

where: $L=$ belt length $=L 1+L 2$
$L_{1}=$ tight side belt length
$L_{2}=$ slack side belt length
U.S. units: $\mathrm{L}_{1}[\mathrm{ft}]$, and $\mathrm{L}_{2}[\mathrm{ft}]$. Metric units: $\mathrm{L}_{1}[\mathrm{~m}]$, and $\mathrm{L}_{2}[\mathrm{~m}]$.

Drives with a fixed center to center distance are used in linear positioning, conveying and power transmission applications. In linear positioning applications, the maximum tight side length is inserted in the equation above.

The pre-tension for drives with a fixed center distance can also be approximated using the

Fig. 4

following formulas:

Conveying

(see Figs. 1 and 2)

$$
\mathrm{T}_{\mathrm{i}}=(0.45, \ldots, 0.55) \mathrm{T}_{\mathrm{e}}
$$

Linear Positioning

(see Fig. 3)

$$
\begin{aligned}
& T_{i}=(1.0, \ldots, 1.2) T_{e} \\
& T_{i}=(1.0, \ldots, 2.0) T_{e}=>\text { for ATL series only }
\end{aligned}
$$

Drives with a constant slack side tension

Drives with constant slack side tension have an adjustable idler, tensioning the slack side, which is not locked (Figs. 2 and 5). During operation, the consistency of the slack side tension is maintained by the external tensioning force, $\boldsymbol{F}_{\boldsymbol{e}}$. Drives with a constant slack side tension may be considered for some conveying applications, they have the advantage of minimizing the required pre-tension.

The minimum pre-tension can be calculated from the analysis of the forces at the idler in Fig. 5:

$$
\mathrm{T}_{\mathrm{i}} \approx \mathrm{~T}_{2}=\frac{\mathrm{F}_{\mathrm{e}}}{2 \sin \frac{\theta \mathrm{e}}{2}}
$$

where $\boldsymbol{\theta}_{\boldsymbol{e}}$ is the wrap angle of the belt around the back bending idler (Fig. 5).

Step 7. Calculate Tight Side Tension and Slack Side Tension

Conveying

(see Figs. $1 \& 2$)
The tight side tension $\boldsymbol{T}_{\boldsymbol{1}}$ and the slack side tension
T_{2} are obtained by:

$$
\begin{aligned}
& \mathrm{T}_{1} \approx \mathrm{~T}_{\mathrm{i}}+0.75 \mathrm{~T}_{\mathrm{e}} \\
& \mathrm{~T}_{2}=\mathrm{T}_{1}-\mathrm{T}_{\mathrm{e}}
\end{aligned}
$$

Linear Positioning

(see Fig. 3)
The maximum tight side tension $\boldsymbol{T}_{1 \text { max }}$ is
obtained by:

$$
T_{1 \text { max }} \approx T_{i}+T_{e}
$$

The respective minimum slack side tension $\boldsymbol{T}_{\mathbf{2 m i n}}$ is obtained by:

$$
T_{2 \min } \approx T_{i}-T_{e}
$$

for a fixed center distance.

Step 8. Calculate Belt Width

Determine the allowable tension $\boldsymbol{T}_{1 \text { all }}$ for the cords of a 1 " (or 25 mm) wide belt of the selected pitch given in Table 1 or Table 2. Note that $\boldsymbol{T}_{1 \text { all }}$ is different for open end (positioning) and welded (conveying) belts. Determine the necessary belt width to withstand $\boldsymbol{T}_{1 \text { max }}$.

$$
\mathrm{b} \geq \frac{\mathrm{T}_{1 \max }}{\mathrm{~T}_{1 \mathrm{all}}}
$$

U.S. units: $\mathrm{T}_{1}[\mathrm{lb}], \mathrm{T}_{1 \mathrm{all}}[\mathrm{lb} / \mathrm{in}], \mathrm{b}$ [in].

Metric units: $\mathrm{T}_{1}[\mathrm{~N}], \mathrm{T}_{1 a l l}[\mathrm{~N} / 25 \mathrm{~mm}], \mathrm{b}[\mathrm{mm}]$.
Determine the allowable effective tension $\boldsymbol{T}_{\text {eall }}$ for the teeth of a 1" (or 25 mm) wide belt of the selected pitch from Table 1 orTable 2. Note that $\boldsymbol{T}_{\text {eall }}$ is different for open end (positioning) and welded (conveying) belts.
Use Table 3 (Tooth in Mesh Factor) that follows to determine the tooth-in-mesh-factor $\boldsymbol{t}_{\boldsymbol{m}}$ corresponding to the number of teeth in mesh $\boldsymbol{z}_{\boldsymbol{m}}$.

Fig. 5

Determine the speed factor $\boldsymbol{t}_{\boldsymbol{v}}$ using Table 4 (Speed Factor) that follows.
Calculate the width of the belt teeth \boldsymbol{b} necessary to transmit $\boldsymbol{T}_{\boldsymbol{e}}$ using the following formula:

$$
\mathrm{b} \geq \frac{\mathrm{T}_{\mathrm{e}}}{\mathrm{~T}_{\text {eall }} \cdot \mathrm{t}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{v}}}
$$

U.S. units: $T_{e}[l \mathrm{~b}], \mathrm{T}_{\text {eall }}[\mathrm{lb} / \mathrm{in}], \mathrm{b}$ [in].

Metric units: $T_{e}[\mathrm{~N}], \mathrm{T}_{\text {eall }}[\mathrm{N} / 25 \mathrm{~mm}]$, b [mm].
Select the belt width that satisfies the last two conditions, giving preference to standard belt widths. However, belts of nonstandard widths are also available.
The factors $\boldsymbol{t}_{\boldsymbol{m}}$ and $\boldsymbol{t}_{\boldsymbol{v}}$ prevent excessive tooth loading and belt wear.
The forces contributing to $\boldsymbol{T}_{\boldsymbol{e}^{\prime}}$, which in Step 1 were estimated, can now be calculated more accurately. Evaluate the contribution of these forces to the effective tension and, if necessary, recalculate $\boldsymbol{T}_{\boldsymbol{e}}$ and repeat steps 6, 7 and 8.
For conveyors, the dimensions of the transported products will normally determine the belt width.

Step 9. Calculate Shaft Forces

Determine the shaft force $\boldsymbol{F}_{\boldsymbol{s} \boldsymbol{1}}$ at the driver pulley:
For angle of wrap $\theta=180^{\circ}$:
$\mathrm{F}_{\mathrm{s} 1}=\mathrm{T}_{1}+\mathrm{T}_{2}$
For angle of wrap around the small pulley θ
$<180^{\circ}$ (unequal diameter pulleys):

$$
F_{s 1}=\sqrt{T_{1}^{2}+T_{2}^{2}-2 T_{1} \cdot T_{2} \cos \theta}
$$

where $\theta=2 \cdot \pi \cdot\left(0.5-\frac{d_{2}-d_{1}}{2 \cdot \pi \cdot C}\right)$
Determine the shaft force $\boldsymbol{F}_{\boldsymbol{s} \mathbf{2}}$ at the idler pulley:
For angle of wrap $\theta=180^{\circ}$:
$F_{s 2}=2 \cdot T_{2}$ when load moves toward the driver pulley, and
$F_{s 2}=2 \cdot T_{1}$ when load moves away from the driver pulley.
For angle of wrap around the small pulley
$\theta<180^{\circ}$ (unequal diameter pulleys):
$F_{s 2}=T_{2} \cdot \sqrt{2(1-\cos \theta)}$ when load moves toward the driver and
$F_{S 2}=T_{1} \cdot \sqrt{2(1-\cos \theta)}$ when the load moves away from the driver.

Step 10. Calculate the Stiffness of a Linear Positioner

The total stiffness of the belt depends mainly on the stiffness of the belt segments between the pulleys. In most cases, the influence of belt teeth and belt cords in the tooth-in-mesh area can be ignored.
Calculate the resultant stiffness coefficient of tight and slack sides \boldsymbol{k}, as a function of the slide position (Fig. 6).

$$
\begin{array}{ll}
\mathbf{k}=\mathrm{c}_{\mathrm{sp}} & \cdot b \cdot \frac{\mathrm{~L}}{L_{1} \cdot L_{2}} \\
\text { where: } & L_{1}=\text { tight side length } \\
L_{2} & =\text { slack side length } \\
\mathrm{C}_{\mathrm{sp}} & =\text { specific stiffness (Table 1). }
\end{array}
$$

U.S. units: $\mathrm{k}[\mathrm{lb} / \mathrm{in}], \mathrm{C}_{\mathrm{sp}}$ [lb/in], $\mathrm{b}[\mathrm{in}], \mathrm{L}[i n]$. Metric units: $k[\mathrm{~N} / \mathrm{mm}], \mathrm{C}_{\mathrm{sp}}[\mathrm{N} / \mathrm{mm}], \mathrm{b}[\mathrm{mm}], \mathrm{L}[\mathrm{mm}]$.
Note that \boldsymbol{k} is at its minimum when the tight and slack sides are equal.
Determine the positioning error $\Delta \boldsymbol{x}$ due to belt elongation caused by the remaining static force $\boldsymbol{F}_{\boldsymbol{s t}}$ on the slide:

$$
\Delta x=\frac{F_{\mathrm{st}}}{\mathrm{k}}
$$

In Fig. 6, for example, $\boldsymbol{F}_{\boldsymbol{s} \boldsymbol{t}}$ is comprised of $\boldsymbol{F}_{\boldsymbol{f}}$ and $\boldsymbol{F}_{\boldsymbol{w}}$ and is balanced by the static effective tension $\boldsymbol{T}_{\text {est }}$ at the driver pulley.
Note that $\boldsymbol{\Delta x}$ is inversely proportional to the belt width. If you want reduced $\boldsymbol{\Delta} \boldsymbol{x}$, increase the belt width or select a belt with stiffer cords and/or with a larger pitch.

Fig. 6

Graph 1

Tooth In M esh Factor

No. of Teeth in M esh zm	Tooth in M esh Factor tm
3	0.39
4	0.5
5	0.59
6	0.67
7	0.74
8	0.8
9	0.85
10	0.89
11	0.92
12	0.95
13	0.97
14	0.99
15	1

Table 3

Speed Factor

Speed		Speed Factor tv
$\mathrm{ft} / \mathrm{min}$	m / s	
0	0	0.99
200	1	0.98
400	2	0.97
600	3	0.95
800	4	0.93
1000	5	0.9
1200	6	0.87
1400	7	0.84
1600	8	0.81
1800	9	0.77
2000	10	

Table 4

GRAPH 2a

GRAPH 2b

GRAPH 2c

GRAPH 2d

Conveying

```
\(v=120 \mathrm{ft} / \mathrm{min}\)
```

$\mathrm{W}=60 \mathrm{lb}$
18 " x 12"
C $=28 \mathrm{ft}(336 \mathrm{in})$
b $=15^{\circ}$
$\mathrm{d}_{\text {。 }} \approx 3.5^{\prime \prime}$
slider bed made of steel belt teeth covered with nylon fabric

Considering only the box size, a belt width of approximately 12 " would be necessary. Instead of using one 12" wide belt, however, we decide to build a conveyor with two parallel running belts. The minimum belt width will be determined.

Step 1

The boxes are carried lengthwise on 2 ft centers
Weight distribution over conveyor length $\mathrm{w}_{\mathrm{m}}=30 \mathrm{lb} / \mathrm{ft}$.
Friction force

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{f}}=\mu \cdot \mathrm{w}_{\mathrm{m}} \cdot \mathrm{~L}_{\mathrm{m}} \cdot \cos ß & \\
\mathrm{~F}_{\mathrm{f}}=0.3 \cdot 30 \frac{\mathrm{lb}}{\mathrm{ft}} \cdot 28 \mathrm{ft} \cdot \cos 15^{\circ} & \mathrm{F}_{\mathrm{f}}=243.4 \mathrm{lb}
\end{array}
$$

(coefficient of friction $\mu=0.3$ obtained fromTable 1A)
Gravitational load

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{g}}=\mathrm{w}_{\mathrm{m}} \cdot \mathrm{~L}_{\mathrm{m}} \cdot \sin ß & \\
\mathrm{~F}_{\mathrm{f}}=30 \frac{\mathrm{lb}}{\mathrm{ft}} \cdot 28 \mathrm{ft} \cdot \sin 15^{\circ} & \mathrm{F}_{\mathrm{f}}=217.4 \mathrm{lb}
\end{array}
$$

Effective tension

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{e}}=243.4 \mathrm{lb}+2174 \mathrm{lb} & \mathrm{~T}_{\mathrm{e}}=\mathrm{F}_{\mathrm{f}}+\mathrm{F}_{\mathrm{g}} \\
& \mathrm{~T}_{\mathrm{e}}=460.8 \mathrm{lb}
\end{array}
$$

Step 2

Selected belt tooth profile $=>H$ (Graph 2a)
An effective tension of 460.8 lb can be transmitted by either L or H belt. We choose H tooth profile (0.5 "). The minimum belt width to transmit the load will be approximately 2.5 inches.

Step 3

Approximate number of pulley teeth

$$
\tilde{\mathrm{z}}_{\mathrm{p}}=\frac{\pi \cdot 3.5 \mathrm{in}}{0.5 \mathrm{in}}
$$

$$
\begin{gathered}
\tilde{z}_{p}=\frac{\pi \cdot \tilde{d}}{p} \\
=\tilde{z}_{p}=21.99 \\
z=22
\end{gathered}
$$

Chosen number of teeth
(chosen number of teeth is greater than the recommended minimum number of pulley teeth for H tooth profile belt $\left[z_{\min }=14\right]$ given in Table 1)
Pulley pitch diameter

$$
\mathrm{d}=\frac{0.5 \mathrm{in} \cdot 22}{\pi}
$$

$$
\begin{aligned}
& d=\frac{p \cdot z_{p}}{\pi} \\
& d=3.501 \text { in }
\end{aligned}
$$

Step 4
Preliminary number of belt teeth

$$
\tilde{z}_{\mathrm{b}}=2 \cdot \frac{336 \text { in }}{0.5 \text { in }}+22
$$

Chosen number of belt teeth
Belt length

$$
\mathrm{L}=1366 \cdot 0.5 \mathrm{in}
$$

$$
\begin{aligned}
& \tilde{z}_{b}=2 \cdot \frac{\tilde{\mathrm{C}}}{\mathrm{p}}+\mathrm{z}_{\mathrm{p}} \\
& \tilde{z}_{\mathrm{b}}=1366 \\
& \mathrm{z}_{\mathrm{b}}=1366 \\
& \mathrm{~L}=\mathrm{z}_{\mathrm{p}} \cdot \mathrm{p} \\
& \mathrm{~L}=683 \text { in }
\end{aligned}
$$

Step 5

Number of teeth in mesh

$$
\mathrm{z}_{\mathrm{m}}=\frac{22}{2}
$$

$z_{m}=\frac{z_{p}}{2}$
$z_{m}=11$

Step 6

Pre-tension

$$
\mathrm{T}_{\mathrm{i}}=0.5 \mathrm{~T}_{\mathrm{e}}
$$

$$
\mathrm{T}_{\mathrm{i}}=0.5 \cdot 460.8 \mathrm{lb}
$$

$$
\mathrm{T}_{\mathrm{i}}=230.4 \mathrm{lb}
$$

Step 7

Tight side tension

$$
\begin{aligned}
& \mathrm{T}_{1} \approx \mathrm{~T}_{\mathrm{i}}+0.75 \mathrm{~T}_{\mathrm{e}} \\
& \mathrm{~T}_{1} \approx 230.4 \mathrm{lb}+0.75 \cdot 460.8 \mathrm{lb}
\end{aligned}
$$

$$
\mathrm{T}_{1}=576 \mathrm{lb}
$$

Slack side tension

$$
\mathrm{T}_{2}=\mathrm{T}_{1}-\mathrm{T}_{\mathrm{e}}
$$

$$
\mathrm{T}_{2}=576-460.8 \mathrm{lb}
$$

$$
\mathrm{T}_{2}=115.2 \mathrm{lb}
$$

Step 8

Allowable belt tension (from Table 1)

$$
\mathrm{T}_{\text {1all }}=245 \mathrm{lb} / \mathrm{in}
$$

Belt width b to withstand $T_{1 \text { max }}$

$$
\mathrm{b} \geq \frac{\mathrm{T}_{1 \max }}{\mathrm{~T}_{1 \mathrm{all}}}
$$

$$
\mathrm{b} \geq \frac{576 \mathrm{lb}}{245 \frac{\mathrm{lb}}{\mathrm{in}}}
$$

$$
\mathrm{b} \geq 2.35 \text { in }
$$

Allowable effective tension (from Table 1)

$$
\mathrm{T}_{\text {eall }}=330 \mathrm{lb} / \mathrm{in}
$$

Tooth in mesh factor

$$
\mathrm{t}_{\mathrm{m}}=0.92
$$

(from Table 3; for $\mathrm{z}_{\mathrm{m}}=11$)
Speed factor

$$
\mathrm{t}_{\mathrm{v}}=1
$$

(from Table 4; for $\mathrm{v}=120 \mathrm{ft} / \mathrm{min}$)
Belt width to transmit T_{e}

$$
\mathrm{b} \geq \frac{\mathrm{T}_{\mathrm{e}}}{\mathrm{~T}_{\text {eall }} \bullet \mathrm{t}_{\mathrm{m}} \bullet \mathrm{t}_{\mathrm{v}}}
$$

$$
\mathrm{b} \geq \frac{460.8 \mathrm{lb}}{330 \frac{\mathrm{lb}}{\mathrm{in}} \cdot 0.92 \cdot 1}
$$

$$
\mathrm{b} \geq 1.52 \text { in }
$$

Chosen belt width-boxes will be conveyed on two belts $1.5^{\prime \prime}$ wide each
(Note that each belt is loaded by half of the calculated forces)

Step 9

Shaft force at driver

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{s} 1}=\mathrm{T}_{1}+\mathrm{T}_{2} \\
& \mathrm{~F}_{\mathrm{s} 1}=576 \mathrm{lb}+115.2 \mathrm{lb}
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{s} 1}=691.2 \mathrm{lb}
$$

Shaft force at idler

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{s} 2}=2 \mathrm{~T}_{2} \\
& \mathrm{~F}_{\mathrm{s} 2}=2 \cdot 115.2 \mathrm{lb}
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{s} 2}=230.4 \mathrm{lb}
$$

Linear Positioning

v	$=3.5 \mathrm{~m} / \mathrm{s}$	Speed
a	$=20 \mathrm{~m} / \mathrm{s}^{2}$	Slide acceleration
$\mathrm{m}_{\mathrm{s}}=30 \mathrm{~kg}$	Slide mass	
$\mathrm{F}_{\mathrm{f}}=50 \mathrm{~N}$	Friction force	
$\Delta \chi$	$\leq 0.1 \mathrm{~mm}$	Positioning error
$\mathrm{d}_{\mathrm{o}} \approx 50 \mathrm{~mm}$	Pulley diameter	
$\mathrm{C}=3000 \mathrm{~mm}$	Center distance	
S	$=2500 \mathrm{~mm}$	Travel
$\mathrm{L}_{\mathrm{p}}=160 \mathrm{~mm}$	Platform length	

Step 1

Force to accelerate the slide

$$
\mathrm{F}_{\mathrm{a}}=30 \mathrm{~kg} \cdot 20 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{a}}=\mathrm{m}_{\mathrm{s}} \cdot \mathrm{a} \\
& \mathrm{~F}_{\mathrm{a}}=600 \mathrm{~N} \\
& \mathrm{~F}_{\mathrm{f}}=50 \mathrm{~N} \\
& \mathrm{~T}_{\mathrm{e}}=\mathrm{F}_{\mathrm{a}}+\mathrm{F}_{\mathrm{f}} \\
& \mathrm{~T}_{\mathrm{e}}=650 \mathrm{~N}
\end{aligned}
$$

Friction force
Effective tension

Step 2

Selected belt tooth form =>AT5 (Graph 2c)
For linear positioning, belts of the AT series are preferred, because of the higher cord and tooth stiffness.

Step 3

Approximate number
of pulley teeth

$$
\tilde{\mathrm{z}}_{\mathrm{p}}=\frac{\pi \cdot 50 \mathrm{~mm}}{5 \mathrm{~mm}}
$$

Chosen number of teeth

$$
\begin{aligned}
& \tilde{z}_{p}=\frac{\pi \cdot \tilde{d}}{p} \\
& \tilde{z}_{p}=31.4 \\
& z_{p}=32
\end{aligned}
$$

(greater than the recommended minimum number of pulley teeth for an AT5 belt $\left[z_{\text {min }}=12\right]$ given in Table 1)
Pulley pitch diameter

$$
\mathrm{d}=\frac{5 \mathrm{~mm} \cdot 32}{\pi}
$$

$$
\begin{aligned}
& d=\frac{p \cdot z_{p}}{\pi} \\
& d=50.93 \mathrm{~mm}
\end{aligned}
$$

Step 4
Preliminary number of belt teeth

$$
\tilde{z}_{\mathrm{b}}=\frac{2 \cdot 3000 \mathrm{~mm}}{5 \mathrm{~mm}}+32
$$

Chosen number of belt teeth
Belt length
$L=1232 \cdot 5 \mathrm{~mm}$
(incl. 160 mm over the slide)

$$
\begin{aligned}
& \tilde{z}_{\mathrm{b}}=2 \cdot \frac{\tilde{\mathrm{C}}}{\mathrm{p}}+\mathrm{z}_{\mathrm{p}} \\
& \tilde{z}_{\mathrm{b}}=1232 \\
& \mathrm{z}=1232 \\
& \mathrm{~L}=\mathrm{z}_{\mathrm{b}} \cdot \mathrm{p} \\
& \mathrm{~L}=6160 \mathrm{~mm}
\end{aligned}
$$

Step 5

Number of teeth in mesh

$$
z_{m}=\frac{32}{2}
$$

$$
\begin{aligned}
& z_{m}=\frac{z_{p}}{2} \\
& z_{m}=16
\end{aligned}
$$

Step 6

$$
\begin{array}{cl}
\text { Belt pre-tension } & \mathrm{T}_{\mathrm{i}}=1.1 \cdot \mathrm{~T}_{e} \\
\mathrm{~T}_{\mathrm{i}}=1.1 \cdot 650 \mathrm{~N} & \mathrm{~T}_{\mathrm{i}}=715 \mathrm{~N}
\end{array}
$$

Step 7
Maximum tight side tension $\quad T_{1 \text { max }} \approx T_{i}+T_{e}$

$$
\mathrm{T}_{1 \max } \approx 715 \mathrm{~N}+650 \mathrm{~N} \quad \mathrm{~T}_{1 \max }=1365 \mathrm{~N}
$$

Maximum slack side tension $\quad T_{2 \max } \approx T_{1 \text { max }}-T_{e}$

$$
\mathrm{T}_{2 \max } \approx 1365 \mathrm{~N}-650 \mathrm{~N} \quad \mathrm{~T}_{2 \max }=715 \mathrm{~N}
$$

Step 8

$\begin{aligned} & \text { Allowable belt tension } \\ & \text { (from Table 1) }\end{aligned} \quad \mathrm{T}_{1 \text { all }}=1615 \mathrm{~N} / 25 \mathrm{~mm}$ (from Table 1)
Belt width b to withstand $T_{1 \text { max }} \quad b \geq \frac{T_{1 \text { max }}}{T_{1 \text { all }}}$

$$
\mathrm{b} \geq \frac{1365 \mathrm{~N}}{1615 \mathrm{~N}} \cdot 25 \mathrm{~mm}
$$

b $\geq 21.1 \mathrm{~mm}$
Allowable effective tension
(from Table 1)
Tooth in mesh factor
(from Table 3; for $\mathrm{z}_{\mathrm{m}}=16$)

$$
t_{m}=1
$$

Speed factor
$\mathrm{T}_{\text {eall }}=1270 \mathrm{~N} / 25 \mathrm{~mm}$

$$
t_{v}=0.96
$$

(from Table 4; for $v=3.5 \mathrm{~m} / \mathrm{s}$)
Belt width to transmit T_{e}

$$
\mathrm{b} \geq \frac{\mathrm{T}_{\mathrm{e}}}{\mathrm{~T}_{\text {eall }} \cdot \mathrm{t}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{v}}}
$$

$$
\mathrm{b} \geq \frac{650 \mathrm{~N}}{\frac{1270 \mathrm{~N}}{25 \mathrm{~mm}} \cdot 1 \cdot 0.96}
$$

Chosen belt width (for increased $b=50 \mathrm{~mm}$ stiffness a wider belt is chosen)

Step 9
Maximum shaft force at driver $\quad \mathrm{F}_{\mathrm{s} 1 \text { max }}=\mathrm{T}_{1_{\text {max }}}+\mathrm{T}_{2 \text { max }}$

$$
\mathrm{F}_{\mathrm{s} 1 \max }=1365 \mathrm{~N}+715 \mathrm{~N} \quad \mathrm{~F}_{\mathrm{s} 1 \max }=2080 \mathrm{~N}
$$

Maximum shaft force at idler $\quad \mathrm{F}_{\text {s2max }}=2 \cdot \mathrm{~T}_{1 \text { max }}$

$$
F_{s 2 \max }=2 \cdot 1365 \mathrm{~N}
$$

$$
\mathrm{F}_{\mathrm{s} 2 \max }=2730 \mathrm{~N}
$$

Step 10
Belt stiffness

$$
\begin{aligned}
& \mathrm{k}=17600 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}} \cdot 50 \mathrm{~mm} \cdot \frac{6000 \mathrm{~mm}}{3290 \mathrm{~mm} \cdot 2710 \mathrm{~mm}} \\
& \mathrm{k}=592.2 \frac{\mathrm{~N}}{\mathrm{~mm}} \\
& \text { Slide displacement } \\
& \Delta x=\frac{50 \mathrm{~N}}{592.2 \frac{\mathrm{~N}}{\mathrm{~mm}}} \\
& \Delta x=\frac{F_{\text {st }}}{\mathrm{k}} \\
& \Delta x=0.084 \mathrm{~mm}<0.1 \mathrm{~mm}
\end{aligned}
$$

Static load on the slide $F_{s t}$ is equal to the friction force ($\mathrm{F}_{\mathrm{st}}=\mathrm{F}_{\mathrm{f}}=50 \mathrm{~N}$)

GATES MECTROL, INC.
9 Northw estern Drive
Salem, NH 03079, U.S.A.
Tel. +1 (603) 890-1515
Tel. +1 (800) 394-4844
Fax +1 (603) 890-1616
email: apps@gatesmectrol.com

Gates Mectrol is a registered trademark of Gates M ectrol
Incorporated. All other trademarks used herein
are the property of their respective owners.
© Copyright 2006 Gates M ectrol Incorporated. All rights reserved. 10/06

